4 research outputs found

    Complex systems and the technology of variability analysis

    Get PDF
    Characteristic patterns of variation over time, namely rhythms, represent a defining feature of complex systems, one that is synonymous with life. Despite the intrinsic dynamic, interdependent and nonlinear relationships of their parts, complex biological systems exhibit robust systemic stability. Applied to critical care, it is the systemic properties of the host response to a physiological insult that manifest as health or illness and determine outcome in our patients. Variability analysis provides a novel technology with which to evaluate the overall properties of a complex system. This review highlights the means by which we scientifically measure variation, including analyses of overall variation (time domain analysis, frequency distribution, spectral power), frequency contribution (spectral analysis), scale invariant (fractal) behaviour (detrended fluctuation and power law analysis) and regularity (approximate and multiscale entropy). Each technique is presented with a definition, interpretation, clinical application, advantages, limitations and summary of its calculation. The ubiquitous association between altered variability and illness is highlighted, followed by an analysis of how variability analysis may significantly improve prognostication of severity of illness and guide therapeutic intervention in critically ill patients

    Review of the Fingerprint Liveness Detection (LivDet) competition series: 2009 to 2015

    No full text
    A spoof attack, a subset of presentation attacks, is the use of an artificial replica of a biometric in an attempt to circumvent a biometric sensor. Liveness detection, or presentation attack detection, distinguishes between live and fake biometric traits and is based on the principle that additional information can be garnered above and beyond the data procured by a standard authentication system to determine if a biometric measure is authentic. The goals for the Liveness Detection (LivDet) competitions are to compare software-based fingerprint liveness detection and artifact detection algorithms (Part 1), as well as fingerprint systems which incorporate liveness detection or artifact detection capabilities (Part 2), using a standardized testing protocol and large quantities of spoof and live tests. The competitions are open to all academic and industrial institutions which have a solution for either software-based or system-based fingerprint liveness detection. The LivDet competitions have been hosted in 2009, 2011, 2013 and 2015 and have shown themselves to provide a crucial look at the current state of the art in liveness detection schemes. There has been a noticeable increase in the number of participants in LivDet competitions as well as a noticeable decrease in error rates across competitions. Participants have grown from four to the most recent thirteen submissions for Fingerprint Part 1. Fingerprints Part 2 has held steady at two submissions each competition in 2011 and 2013 and only one for the 2015 edition. The continuous increase of competitors demonstrates a growing interest in the topic

    Iris data encryption based on Aztec Symbology

    No full text

    Incremental Support Vector Machine for self-updating Fingerprint Presentation Attack Detection systems

    No full text
    In this years Fingerprint Presentation Attack Detection (FPAD) had an increasing interest and the performances became acceptable, especially thanks to the LivDet protocols into the International Fingerprint Liveness Detection competition. A security issue arose from LivDet2015: the FPAD systems are not invariant towards the materials for fabricating spoofs. In other words, some previous works pointed out the vulnerability of these systems when an attackers uses unexpected materials. In this paper, we proposed a solution that exploit the self-update abilities of the classifier to adapt itself to never-seen-before attacks over the time. Experimental results on four LivDet data sets showed that the proposed method allowed to manage this vulnerability
    corecore